
2020/2/8 12:08 Experimental BioPhysics FFFN20 FYST23 FFFN20F 1(11) 

Answers to Question Set 3 

Fluidics - Basics 
 

These answers are not always complete, but they do indicate what are the important 

points in the papers.  

If you have any questions feel free to send an email: jonas.tegenfeldt@ftf.lth.se. 

The suggested literature for this theme is quite extensive. However, the papers are 

overlapping and not everything in the papers is included in the course. Remember that 

the main task is to extract some key pieces of information as well as a general 

understanding of the basic principles of fluidics from the given literature.  

Read the question and try to find the answer in the papers: Beebe’s paper[1], Weigl’s 

paper[2], and Quake’s review[3]. The lectures also key information for the questions. 

For a more comprehensive discussions on microfluidics there are at least two books 

that may be useful: 

1. Nam-Trung Nguyen, Steven T Wereley: Fundamantals and Applications of 

Microfluidics (2006). 

2. Henrik Bruus: Theoretical Microfluidics (Oxford Master Series in Physics) - (2007) 

For the homework questions, note that they can be divided into two categories: Some 

mostly concern listing a few facts. These are labeled (F) and the expected answer 

should fit within five rows of text. Some are more focused on calculations or a 

qualitative argument. These are labeled (C). Here the answer may become more 

extensive due to the space taken up by equations. 

The question labeled ** is more challenging than the others. 
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QUESTIONS ON MICROFLUIDICS 

1. (F) What is the major difference between fluidics in the macro scale and 

fluidics in the micro scale? What are the implications for microfluidics? 

The major differences between fluidics on the macro and micro scales arise from the 
fact that the different observables do not scale equally when we change the 
dimensions of a device. Various phenomena depend on ratios between different 
observables such as volume and surface area, or inertial and viscous effects. Note that 
the properties of the liquid do not change for typical water-based liquids unless the 
channel size approach the size of the molecules involved.  
• The Reynolds number for microchannels is typically < 1 which indicates laminar 
flow (no turbulence). 
• Diffusion: the average time it takes a particle to diffuse a given distance is 
proportional to the square of that distance: x2=Dt. The small distances involved in 
micro- and nanochannels can thus be covered in very small time periods, whereas on 
the macro scale the effects of diffusion can often be neglected. 
• The surface area to volume (SAV) ratio grows rapidly when we shrink dimensions. 
This affects, for example friction between liquid and channel walls, increasing the 
fluidic resistance drastically for smaller channels. Heat dissipation also depends on 
the SAV ratio. 
• Surface tension forces become important for small channels. On the other hand, the 
flow velocity scales with the radius of the channels so that the velocity decreases with 
radius of the channel. 
The main change in going down in size is that the surface-to-volume ratio increases. 
This makes effects that are associated with surfaces more important: Pressure driven 
fluid flow is slower due to viscous drag (friction) of the walls. Electroendosmotic 
flow is possible. 
Advantages of running experiments in microfluidic devices include: (1) less sample 
and reagents are needed, (2) parallel operation is possible for high-thoughput 
screaning, (3) faster analysis, (4) more sensitive analysis, (5) integration of different 
analytical techniques on a single chip, (6) single-cell measurements are possible 
giving additional information as compared to standard bulk measurements. 

2. (C) What is the Reynolds Number? What is the Reynolds Number in a typical 

microfluidic channel (assume water, velocity ~ 1mm/s, channels of size 10µm 

and room temperature)? What type of flow do you have in that case? 

 

Laminar flow. Using the Reynolds number instead of solving the differential 

equations is a very simple way to predict behaviors in fluids. Compare with the 

discussion about the bacterium and dolphin swimming in water. 
� 

Re = inertial terms
viscous terms

= ρ uD
η

= 1000kgm
−3 10−3ms−110 ⋅10−6m
10−3kgm−1s−1

= 0.01<<1 ⇒
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Note that water has the viscosity of 1 centiPoise = 1cm-1 g sec-1=1 kg m-1s-1 

3. (F) What are the major means of moving sample and/or liquids in small 

channels? How do they scale with size of the channels? 

The typical dimension of the channel is given by a (radius).  

• Pressure driven flow (v~a2) 

• capillary forces (v~a) 

• electrophoresis (independent on size) 

• electroendosmosis (works well for a~<100µm) 

• dielectrophoresis (typically a~1µm-10µm). 

• Centrifugal forces (www.gyros.com). 

• Acoustic forces (Thomas Laurell group in Lund) 

 
4. (C) A pressure difference can be applied between one free end and one end 

connected to vacuum or to an overpressure. What are the practical differences 

between these two approaches? 

Overpressure: Device can break apart. Liquid leaks out of device. Risk that the 

particles cannot stand the pressure. 

Vacuum: bubbles can form in the device; maximum pressure difference is 1 atm. Air 

can be sucked into device. Increased evaporation. Device is held together. 

Questions 5 to 7 are all connected - Think first above a general strategy to address 

these questions before trying to solve them. It is a good idea to calculate the 

ultimate expression for each question before introducing the actual numerical 

values. This way, one can benefit from the fact that some of the variables cancel 

out. On the other hand, calculating intermediate values can be useful as a way to 

check for inconsistencies. 

To what extent can you treat these types of problems analogously to electronics 

problems involving resistances, currents and voltages? 

For the serial case (q. 5), the flows, Q0, in both sections are the same (assuming 

incompressible fluid). Calculate the total pressure difference: 

 ΔPtotal = P1 + P2 ⇔ RtotalQ0 = R1Q0 + R2Q0 ⇒ Rtotal = R1 + R2
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In the parallel case (q. 6), the pressure drops (DP) across the channels are the 

same. Calculate the total flow rate: 

 

This is in analogy with how networks of passive components (resistors, 

capacitors, inductances) are treated. In our case, Q corresponds to the current, R to 

resistance and DP to the voltage. 

Numerical values: 

DP=1 atm = 105 Pa [=kgm-1s-2] 

h = 10-3kgm-1s-1 

For the wide channel (w=50µm, h=5µm, L=1mm): 

 

For the narrow channel (w=5µm, h=5µm, L=1mm) use the expression for a square 

cross section: 

 

5. (C) A 50µm wide channel is connected in series with 

a 5µm wide channel. Assuming that each channel is 1mm long and 5µm deep, 

what is the expected flow rate of water through the channels at a pressure 

difference of 1 atm? What are the expected velocities? 

Total fluidic resistance:  

Flow rate Q0 is constant along the device (incompressible fluid and conservation 

of mass): 

  

Velocity in the wide part is given by 

Qtotal =Q1 +Q2 ⇔
ΔP0
Rtotal

= ΔP0
R1

+ ΔP0
R2

⇒ 1
Rtotal

= 1
R1

+ 1
R2

� 

Rwide = 12ηL
wh3

1− 0.63 h
w

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
−1

= 12.8ηL
wh3

=12.8 10−3kgm−1s−1 ⋅10−3m
50 ⋅10−6m 5 ⋅10−6m( )3

= 2.0 ⋅1015kgm−4s−1

� 

Rnarrow = 29ηL
wh3

= 29 10
−3kgm−1s−1 ⋅10−3m
5 ⋅10−6m( )4

= 46 ⋅1015kgm−4s−1

� 

Rtotal = Rwide + Rnarrow = 48 ⋅1015kgm−4s−1

� 

Q0 = ΔP
Rtotal

= 105kgm−1s−2

48 ⋅1015kgm−4s−1
= 2.1⋅10−12m3s−1 = 2.1nLs−1
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and in the narrow part by 

 

6. (C) Same channels as in question 5, only that this time the 

channels are parallel. What are the expected flow rates through 

the channels at an applied pressure difference of 1 atm? Velocities? 

Flow rates Qwide and Qnarrow and corresponding velocities are given by: 

  

and 

 

Doublecheck! 

Total fluidic resistance:  

 

OK! 

 

7. (C) This time the device of questions 5 is 

connected to a device of question 6. Explain 

briefly how to calculate the flow rates and velocities in the channels. 

Total fluidic resistance is (use values from above): 

  

� 

v = Q
A

= ΔP
whRtotal

= 2.1⋅10−12m3s−1

50 ⋅10−6m 5 ⋅10−6m
8.4mms−1

� 

v = Q
A

= ΔP
whRtotal

= 2.1⋅10−12m3s−1

5 ⋅10−6m 5 ⋅10−6m
= 84mms−1

� 

Qwide = ΔP
Rwide

= 105kgm−1s−2

2.0 ⋅1015kgm−4s−1
= 50 ⋅10−12m3s−1 = 50nL s−1

vwide = Qwide

wh
= 50 ⋅10−12m3s−1

50 ⋅10−6m 5 ⋅10−6m
= 200mms−1

� 

Qnarrow = ΔP
Rnarrow

= 105kgm−1s−2

46 ⋅1015kgm−4s−1
= 2.2 ⋅10−12m3s−1 = 2.2nL s−1

vnarrow = Qnarrow

wh
= 2.2 ⋅10−12m3s−1

5 ⋅10−6m 5 ⋅10−6m
= 87mms−1

� 

1
Rtotal

= 1
Rwide

+ 1
Rnarrow

⇒ Rtotal =1.92 ⋅1015kgm−4s−1

� 

Qtotal = ΔP
Rtotal.

= 105kgm−1s−2

1.92 ⋅1015kgm−4s−1
= 52 ⋅10−12m3s−1 = Qwide + Qnarrow

� 

Rserial + Rparallel = 48 ⋅1015kgm−4s−1 +1.92 ⋅1015kgm−4s−1 = 50 ⋅1015kgm−4s−1
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Total rate Q0 is: 

  

Velocity in the first wide part is given by 

  

and in the first narrow part by 

 

For the section with the parallel channels we calculate the flow rates and the 

velocities. Note first that 

 

which is used to calculate the flow and velocities for the wide channel of the 

parallel section: 

 

and for the narrow channel of the parallel section: 

 

 

8. (C) In a diffusive mixer (see figure to the right) the 

entrance velocities are 100µm/s for the outer channels and 

1µm/s for the center channel. With 50µm wide channels, 

what is the expected mixing time for a small protein 

dissolved in the buffer solution entering in the center channel? 

� 

Q0 = ΔP
Rtotal

= 105kgm−1s−2

50 ⋅1015kgm−4s−1
= 2.0 ⋅10−12m3s−1 = 2.0nL s−1

� 

vwide = Q0

Awide

= Q0

wh
= 2.0 ⋅10−12m3s−1

50 ⋅10−6m 5 ⋅10−6m
= 8.0mms−1

� 

vnarrow = Q0

Anarrow

= Q0

wh
= 2.0 ⋅10−12m3s−1

5 ⋅10−6m 5 ⋅10−6m
= 80mms−1

� 

ΔPparallel = Q0Rparallel = ΔP
Rtotal

Rparallel

� 

Qwide
parallel =

ΔPparallel
Rwide

= Q0

Rparallel

Rwide

= 2.0 ⋅10−12m3s−1 1.92 ⋅10
15kgm4s−1

2.0 ⋅1015kgm4s−1
=1.9 ⋅10−12m3s−1 =1.9nL s−1

vwide
parallel = Qwide

parallel

Awide

= Qwide
parallel

w h
= 1.9 ⋅10−12m3s−1

50 ⋅10−6m 5 ⋅10−6m
= 7.6mms−1

� 

Qnarrow
parallel =

ΔPparallel
Rnarrow

= Q0

Rparallel

Rnarrow

= 2.0 ⋅10−12m3s−1 1.92 ⋅10
15kgm4s−1

46 ⋅1015kgm4s−1
= 84 ⋅10−15m3s−1 = 84 pL s−1

vnarrow
parallel = Qnarrow

parallel

Anarrow

= Qnarrow
parallel

w h
= 84 ⋅10−15m3s−1

5 ⋅10−6m 5 ⋅10−6m
= 3.3mms−1
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To simplify things, assume plug-like flow (no parabolic flow profile!). Also, assume 

incompressible flow and conservation of mass. 

The question is quite open-ended! In the following, we calculate the time it takes on 

average for the protein to traverse the central, very narrow, stream. On the other hand, 

in fact what may be the most relevant is the time for the water to diffuse into the 

central stream and mix with the protein. Note that the protein will diffuse so that the 

protein stream will widen along the channel. This means that the measurements must 

be adapted accordingly. To measure the protein, different regions of interest (ROI) 

must be selected along the channel. Shortly after the mixing point, the ROI can be 

small with a size roughly corresponding to the width of the stream. Further down the 

channel, the ROI should be made long (laterally) to cover most of the protein. 

 

First, calculate the width of the central stream, x, in the exit channel. We have 

 

Here h is the depth of the channel, vfinal is the velocity of the mixed stream in the exit 

channel and Qcentral is the flow rate of the central entry channel. 

Calculate vfinal. This is basically the total flow coming in from the three channels on 

the left, divided by the cross-sectional area of the exit channel. 

 

Combine the above two equations to obtain: 

 

Note, that we used the fact that the cross-sectional areas of all entry channels are 

equal. 

 

� 

h x v final = Qcentral ⇒ x = Qcentral

h v final

� 

v final =
Qtop + Qcentral + Qdown

w h

� 

x = Qcentral

Qtop + Qcentral + Qdown

w = vcentral Acentral

vtop Atop + vcentral Acentral + vdown Adown

w

Atop = Acentral = Adown ⇒

x = vcentral
vtop + vcentral + vdown

w = 1µm /s
100µm /s +1µm /s +100µm /s

50µm = 250nm



2020/2/8 12:08 Experimental BioPhysics FFFN20 FYST23 FFFN20F 8(11) 

We have  

 

For the diffusion coefficient, D, we have (Stokes-Einstein relation) 

 

and for a typical protein (radius a=5nm) under typical conditions (25°C water 

solution) we have 

 

For a diffusion length of 250nm we therefore get 

 

which is on the order of the typical time scale of these types of devices. 

For water diffusing in, the time would be an order of magnitude less. 

Alternative: 

One can also consider the equalities of the incoming and outgoing flows. This is more 

straight-forward! 

 

Divide the two equations! 

 

 

 

� 

r2 = 2Dt⇒ t =
r2

2D

� 

D = kBT
6πη a

� 

D = kBT
6πη a

= 4 ⋅10−21J[= kgm2s−2]
6π10−3kgm−1s−15 ⋅10−9m

= 42.4 ⋅10−12m2s−1 = 42µm2s−1

� 

t =
r2

2D
=

250 ⋅10−9m( )2
2 ⋅ 42.4 ⋅10−12m2s−1

= 740µs

Qi
i
∑ = vfinalA = vfinalh wi

i
∑ = vfinalhW

Qi = vfinalAi = vfinalhwi

Qi

Qi
i
∑

= vhwi

vh wi
i
∑

⇒ vi
vi

i
∑

= wi

W
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9. (F) Taylor diffusion is due to the combined effect of a parabolic flow profile 

and diffusion. Explain how it improves the integrity of a sample plug in a flow 

system. Under some circumstances the flow behaves as if the spreading due to 

the parabolic flow profile is not there. Explain! 

In a situation with pressure driven flow, but no diffusion, the parabolic flow profile 

will result in a spreading of a small sample plug, W~ut. Adding lateral diffusion, the 

spreading due to the parabolic flow profile is in fact decreased to something that 

scales with the square root of time, W2~t. It is quite odd, but we have a situation 

where diffusion reduces the spreading. 

At sufficiently small Péclet numbers and/or in sufficiently shallow channels, Taylor 

diffusion will ensure that the sample moves in a plug-like fashion. 

Note that for Taylor diffusion to be applicable, sufficient time needs to pass for the 

sample molecules to diffuse across the channel width, t >> w2/D or the sample plug 

needs to move a sufficient distance along the channel L >> Pe w. 

10. ** (C) Derive the expression for the velocity as a function of time of the fluid 

as it fills a small channel by capillary action. Consider a channel with open 

ends. Qualitatively, what happens if the end of the channel is closed? 

Viscous-drag forces balance forces due to surface energy (assume low Reynolds 

number, i.e. no inertial effects). 

 

Viscous forces are given by the expression for flow and the fluidic resistance (in our 

case for a circular cylinder, radius a). 

 

Surface forces are simply the circumference (2pa) times the surface energy. 

 

 

 

 

� 

Fdrag = Fsurface

� 

Q = ΔP
R

⇔ vA =
Fdrag
AR

⇒ Fdrag = vA2R = vπ 2a4 8η x
π a4

= 8πηvx

� 

Fsurface = 2πaγLG cosθ
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We now have 

 

Calculate position and velocity as a function of time.  

 

The capillary number is given by (low Ca -> surface energies dominate; high Ca -> 

viscous forces dominate) 

 

So that 

 

Viscous forces dominate close to t=0, basically because the velocity is large initially 

but falls off as the channel is filled with liquid. Note that the capillary stress g/a is 

constant as a function of time where the shear stress, hU/h falls off as velocity falls 

off. 

� 

Fviscous = Fsurface
⇒ 8πηvx = 2πaγLG cosθ

v = aγLG cosθ
4η x

= a0.0728Nm−1 cos20°
4 10−3kgm−1s−1 x

=17ms−1 a
x

� 

v = dx
dt

= γLG cosθ
4η

a
x

⇒ x dx∫ = γLG cosθ
4η

adt∫

⇒ x 2

2
= γLG cosθ

4η
a t + const

x(t = 0) = 0 ⇒ const = 0

⇒ x 2 = γLG cosθ
2η

a t

⇒ v 2 = γLG cosθ
4η

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
a2

x 2 = γLG cosθ
4η

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
a2

γLG cosθ
2 ⋅ 2η

a t

1
2

= γLG cosθ
8η

a
t

or equivalently simply from v = dx
dt

 etc.

Ca = ηv
γ
~ v

� 

Ca2 = η2v 2

γ 2
= η2

γ 2
γ cosθ
8η

a
t

= ηcosθ
8γ

a
t

⇒ Ca = ηcosθ
8γ

a
t
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For a closed channel we have a counteracting force due to the pressure exerted by the 

enclosed air volume in addition to the interfacial force and the drag force. From the 

ideal gas law we have PV=nRT. Taking into account that we operate at air pressure 

we now have: 

 

Note that the air will eventually absorb into the water. In the long run the air bubble is 
expected to disappear[4]. 
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